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ABSTRACT 

Background and aims: Certain diets are often used to manage functional gastrointestinal 
symptoms in irritable bowel syndrome (IBS) patients. Personalized diet-induced microbiome 
modulation is being preferred method for symptom improvement in IBS. Although personalized 
nutritional therapies targeting gut microbiota using artificial intelligence (AI) promise great 
potential, this approach has not been studied in patients with IBS. Therefore, in this study, we 
investigated the efficacy of an AI-based personalized microbiome diet in patients with IBS-Mix 
(M). 
Methods: This study was designed as a pilot, open-labeled study. We enrolled consecutive IBS-M 
patients (n=25, 19 females, 46.06 ± 13.11 years) according to Rome IV criteria. Fecal samples 
were obtained from all patients twice (pre- and post-intervention), and high; throughput, 16S rRNA 
sequencing was performed. Patients were divided into two groups based on age, gender, and 
microbiome matched. Six weeks of AI-based microbiome diet (n=14) for Group 1 and standard IBS 
diet (Control Group, n=11) for Group 2 were followed. AI-based diet was designed based on 
optimizing a personalized nutritional strategy by an algorithm regarding individual gut microbiome 
features. An algorithm assessing an IBS index score using microbiome composition attempted to 
design the optimized diets based on modulating the microbiome towards the healthy scores. Baseline 
and post-intervention IBS-SSS (symptom severity scale) scores and fecal microbiome analyses were 
compared. 
Results: The IBS-SSS evaluation for pre- and post-intervention exhibited significant improvement 
(p<0.02 and p<0.001 for the control and intervention groups, respectively). While the IBS-SSS 
evaluation changed to moderate from severe in 82% (14 out of 17) of the intervention group, no such 
change was observed in the control group. After six weeks of intervention, a significant shift in 
microbiota  profiles in terms of alfa- or beta-diversity was not observed in both groups. A trend of 
decrease in the Ruminococcaceae family for the intervention group was observed (p=0.17). A 
statistically significant increase in the Faecalibacterium genus was observed in the intervention 
group (p = 0.04). Bacteroides and putatively probiotic genus Propionibacterium were increased in 
the intervention group; however,    Prevotella was increased in the control group. The change (delta) 
values in IBS-SSS scores (before- after) intervention and control groups were significantly higher in 
the intervention group. 
Conclusion: AI-based personalized microbiome modulation through a diet significantly improves 
IBS-related symptoms in patients with IBS-M. Further large-scale, randomized placebo-controlled 
trials with long-term follow-up (durability) are needed. 

Keywords: Functional bowel disorder · Bacteria · Microbiome · Diet · Artificial intelligence 
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1 Introduction 

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that negatively impacts the quality of 
life  and healthcare sources [1]. The exact causes of IBS remain largely unknown. These factors are multifactorial and 
varied among patients. The pathophysiology of IBS is complex, but recent evidence suggests that the gut microbiome 
may play an essential role in the development, progression, and severity of these symptoms [2]. The advent of next-
generation sequencing has increased investigations to identify changes in the gut microbiome related to IBS. Some 
investigators   reported increased fecal Streptococcus [3] and Proteobacteria levels in the gut mucosa [4]. IBS severity 
was also associated with lower alpha diversity [5]. A recent systematic review of 24 studies performed before 2018 
has found that while there was some overlap, none of the studies reported the same differences in gut microbiota [6, 
7]. This inconsistency can be the result of a unique microbiome composition for each patient and each disease state. In 
other words, discovering disease biomarkers of IBS might be challenging due to diverse and heterogeneous 
microbiome compositions across populations. The second reason for this inconsistency might be that the dynamic 
alterations of the microbiome complicate the interpretation of data in gut microbiome studies over time. For this 
reason, a snapshot of observations from cross-sectional studies lacks temporal resolution and does not reflect clinical 
features of IBS. Diet is increasingly gaining popularity as an interventional approach in IBS treatment. There are specific 
evidence-based diets used for IBS-symptom relief. The most popular and studied diet is the FODMAP diet [8]. 
Although the FODMAP diet induces rapid symptom-relief (especially for bloating/distension), it has detrimental 
effects on gut microbiota (lowering microbiome diversity). The temporary symptom relief by the FODMAP diet is a 
consequence of the decreased gut abundance of the bacterial population, and it is not a healthy state for the host. 
To overcome these microbiome-related inconsistencies in clinical studies, we need to personalize microbiota- 
modifying therapies. This can be done through specific personalized diets created by machine-learning algorithms, 
which can handle complex gut microbiome data harboring intrinsic correlations. 
In this pilot study, we aimed to modulate the gut microbiota of IBS patients with an individualized diet. The secondary 
outcome is to measure the therapeutic effect of this diet on disease-specific parameters. 

 
2 Materials and methods 

Study cohorts 

This study was designed as a pilot, open-labeled study. We enrolled consecutive IBS-M patients (n=25, 19 females, 
46.06 ± 13.11 years) according to Rome IV criteria and a healthy control group (n=34) used to model IBS 
classification models. The healthy group consisted of subjects without chronic diseases affecting microbiome and 
antibiotic/probiotic consumption in the previous six week-period. IBS-M patients were excluded if they had severe 
cardiac, liver, neurological, psychiatric diseases or a gastrointestinal disease other than IBS (e.g., celiac disease or 
inflammatory bowel disease). The patients were not enrolled in the study if they were following a restricted diet for any 
purpose. Certain medications involving spasmolytics, antidepressants, etc., were allowed if administered at stable doses 
for the previous four weeks. Probiotics and antibiotics (including rifaximin) were not allowed for the previous six weeks. 
Paired fecal samples were obtained (pre- and post-intervention), and high; throughput, 16S rRNA sequencing was 
performed  to reveal the microbiota compositions at the baseline and post-intervention. Patients were divided into 
two groups based on age and gender. Moreover, baseline microbiota compositions were clustered to form subpopulations, 
and each treatment group was populated to represent similar subpopulation diversity. Six weeks of personalized 
microbiome diet (n=14) for Group 1 and standard IBS diet (Control Group, n=11) for Group 2 were followed. 

 
Fecal sampling and 16S ribosomal RNA gene sequencing 

Fecal samples were collected using BBL culture swabs (Becton, Dickinson and Company, Sparks, MD) and transported 
to the laboratory in a DNA/RNA shield buffer medium. DNA was extracted directly from the stool samples using a 
Qiagen Power Soil DNA Extraction Kit (Qiagen, Hilden, Germany). The final concentrations of extracted DNA were 
measured using a NanoDrop (Shimazu). dsDNA quantification was done using the Qubit dsDNA HS Assay Kit and a 
Qubit 2.0 Fluorimeter (Thermo Fisher Scientific, Waltham, MaA USA), and then they were stored at 20°C for 
further  analysis. 
The sequencing of 16S rRNA was performed according to the protocol of the manufacturer (16S Metagenomic 
Sequencing Library Preparation Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System) using 
Illumina MiSeq (Illumina, San Diego, CA, USA) system. In brief, 2-step PCR amplification was used to construct 
the sequencing library. The 1st step of PCR is to amplify the V4 hypervariable region. The entire length of the 
primers was: 515F, forward 5’ GTGCCAGCMGCCGCGGTAA3’ and 806R, reverse 
’GGACTACHVGGGTWTCTAAT3’ [9].  
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PCR amplification was performed using a 25L reaction volume that contained 12.5L of 2X KAPA HiFi HotStart 
ReadyMix (KAPA Biosystems, Wilmington, MA USA), 0.2M each of forward and reverse primer, and 100ng of the DNA 
template. The reaction process was executed by raising the solution temperature to 95°C for 3min, then performing 25 
cycles of 98°C for 20sec, 55°C for 30sec, and 72°C for 30sec, ending with the temperature held at 72°C for 5min. 
Amplicons were purified using the AMPure XP PCR Purification Kit (Beckman Coulter Life Sciences, Indianapolis, IN, 
USA). The second step of PCR is to add the index adaptors using a 10-cycle PCR program. The PCR step adds the 
index 1 (i7), index 2 (i5), sequencing, and common adapters (P5 and P7). PCR amplification was performed on a 25L 
reaction volume containing 12.5L of 2X KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, MA USA), 
0.2M of each index adaptor (i5 and i7), and 2.5L of the first-PCR final product. The reaction process was executed by 
raising the solution temperature to 95°C for 3min, then performing 10 cycles of 98°C for 20sec, 55°C for 30sec, and 
72°C for 30sec, ending with a 72°C hold for 5min. Amplicons were purified using the AMPure XP PCR Purification 
Kit (Beckman Coulter Life Sciences, Indianapolis, IN, USA). 

All amplified products were then checked with 2% agarose gel electrophoresis. Amplicons were purified using the 
AMPure XP PCR Purification Kit (Beckman Coulter Genomics, Danvers, MA, USA) and quantified using the Qubit 
dsDNA HS Assay Kit and a Qubit 2.0 Fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA). Approximately 
15% PhiX Control library (v3) (Illumina, San Diego, CA, USA) was combined with the final sequencing library. 
The  libraries were processed for cluster generation. Sequencing with 250PE MiSeq runs was performed, generating 
at least 50.000 reads per sample. 
Sequencing data were analyzed using the QIIME pipeline [10] after filtering and trimming the reads for PHRED 
quality score 30 via the Trimmomatic tool [11]. Operational taxonomic units were determined using the Uclust 
method, and the units were assigned to taxonomic clades via PyNAST using the Green Genes database [12] with an 
open reference procedure. Alpha- and beta-diversity statistics were assessed accordingly by QIIME pipeline scripts. 
The graph-based visualization of the microbiota profiles was performed using tmap topological data analysis 
framework with Bray-Curtis distance metric. 

 
IBS-index Scoring 

The baseline group of IBS-M patients (n=25) and the healthy controls (n=34) were compared in terms of their microbiota 
compositions. The detected microbiota profiles were used to characterize the disease in a classification setting. Based 
on Gradient Boosted Trees (GBT) [13] classification algorithm, a stochastic gradient boosting classification model 
(XGBoost, version 0.90 [14]) was used in Dropouts meet multiple Additive Regression Trees (DART) booster with binary 
logistic regressor. Five-fold cross-validation, with 10 random seeding trials, was used to observe the disease 
classification performance. The logistic regression scores of XGBoost models were used as IBS-index scores. The 
dataset was utilized for training the final IBS-index model. The hyperparameters of the XGBoost model were optimized 
using the Bayesian optimization tool Optuna [15] in a 5-fold-cross validation setting. 

 
The AI-based personalized nutrition model 

The Enbiosis personalized nutrition model estimates the optimal micronutrient compositions for a required 
microbiome modulation. The present study computed the microbiome modulation needed for an IBS case based on 
the IBS indices generated by the machine learning models. The baseline microbiome compositions are perturbed 
randomly with a small probability p. Perturbed profiles are accepted with a probability proportional to the decrease in the 
IBS-index as suggested by Metropolis sampling [16]. This Monte-Carlo random walk in the microbiome composition 
space is expected to meet a low IBS-index microbiome composition nearby the baseline microbiome composition of 
the patient with a minimal modulation. Then, the personalized nutrition model estimates the optimized nutritional 
composition needed for this individual, expecting to drive the IBS-index to lower values. 
Therefore, an algorithm assessing an IBS index score using microbiome composition attempted to design the optimized 
diets based on modulating the microbiome towards the healthy scores. 

 
3 Results 

Gut microbiota communities between IBS patients and Healthy Controls 

The gut microbiome genus-level abundance profile is shown in Figure 1. The gut microbiome profile of the recruited 
patients and the healthy controls showed significant differences in beta diversity. Based on unweighted UniFrac 
dissimilarity measurement of microbiota sample pairs, the patient and the healthy control groups showed different 
community profiles (p < 10−6, PERMANOVA test with 1,000,000 random permutations). The stratified profiles can 
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Figure 1: Genus level abundance profiles. 

Table 1: IBS-SSS scores (mean ± standard deviation) before and after the interventions. 

Pre-intervention Post-intervention P-value (paired t-test) 
Personalized nutrition 357.1 ± 18.2 232.5 ± 61.5 < 0.001 
Control 363.1 ± 16.7 331.8 ± 42.9 < 0.02 

 
 

be observed in the tmap visualization in Figure 2. Clear subgroupings between the IBS cases and the healthy controls 
can be observed from these topological maps. When bacterial taxa are considered individually, the most significant 
differences between the IBS and healthy control groups are observed in Ruminococcaceae (p = 0.014, Mann-Whitney U-
test) and Clostridiaceae (p = 0.022, Mann-Whitney U-test) families and Ruminococcus (p = 0.023, Mann-Whitney U-
test) and Faecalibacterium (p = 0.0005, Mann-Whitney U-test) genera (Figures 3,4). 

 
Disease classification and microbiome-derived IBS index scores 

 
A machine learning (ML) based classifier trained and tested on pre-interventional microbiota profiles exhibited a 
strong classification performance. Using 5-fold cross-validation on the held-out XGBoost classifier models, an 
average ROC-AUC of 0.964 and average classification accuracy of 0.91 were determined. The microbiome-derived 
IBS index scores, which are the inferred disease probability measurements obtained from XGBoost classification 
models, were significantly different (p < 10−5, Mann-Whitney U-test), as shown in Figure 5. 
Evaluating the IBS-index scores on the held-out validation cohorts, we observed that the score distributions of the 
IBS-patients and the healthy controls differ significantly (p = 0.001, Mann-Whitney U-test), implying that the 
machine-learned IBS-index is a strong indicator of the disease. 

 
Clinical Evaluation of Personalized nutrition vs. control groups 

 
The IBS-SSS evaluation for both pre-intervention and post-intervention conducted for both groups exhibited significant 
improvement (p<0.02 and p<0.001 for the control and the personalized nutrition interventions, respectively). It was 
observed that the score improvement for the personalized nutrition group was significantly greater than the control 
group (Table 1, Figure 6). 
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Figure 2: Two-dimensional network visualization of the microbiota profiles using tmap network analysis (constructed 
by Bray-Curtis metric). Two major enterotypes (up: Bacteroides dominant, down: Preveotella Dominant) nearly form 
different disease subgroups. Left: network nodes labeled by disease phenotype. Right: SAFE enrichment analysis of 
the disease scores. Blue-to-red indicates lower to higher IBS scoring. 

 
 
 
 
 
 
 

Figure 3: T h e  Ruminococcaceae family are observed in higher abundance in the IBS Group (p-value 0.014, 
Mann-Whitney U-test), where the Clostridiaceae family is decreased in IBS patients (p-value 0.022, Mann-Whitney 
U-test) 
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Figure 4: Ruminococcus genus is observed more abundantly in the IBS Group (p-value 0.023, Mann-Whitney U-test), 
where Faecalibacterium is observed in significantly lower abundances in IBS patients (p-value 0.0005, Mann-Whitney 
U-test). 

 
 
 
 
 
 
 
 
 

 

Figure 5: The microbiome scores evaluated for the healthy controls and the IBS patients. 
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Figure 6: a) IBS-SSS scores for personalized nutrition intervention and IBS-SSS scores for the control intervention, b) 
IBS-SSS score categories for personalized nutrition pre- and post-intervention, c) IBS-SSS score categories for the 
control treatment pre- and post-intervention. 
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Table 2: IBS-SSS score categories (mean ± standard deviation) before and after the interventions. 
 

 Personalized nutrition  

 Pre-intervention Post-intervention P-value (paired t-test) 
Abdominal pain 76.4 ± 6.4 53.2 ± 15.0 < 0.001 

Abdominal pain frequency 62.1 ± 12.0 37.9 ± 18.2 < 0.001 
Distension 75.4 ± 7.2 42.9 ± 19.9 < 0.001 

Dissatisfaction with bowel habits 75.0 ± 9.3 53.6 ± 18.3 < 0.01 
IBS-related quality of life 68.2 ± 10.3 45.0 ± 21.7 < 0.001 

 Control   
 Pre-intervention Post-intervention P-value (paired t-test) 

Abdominal pain 77.3 ± 6.7 72.7 ± 6.2 0.043 
Abdominal pain frequency 66.4 ± 12.3 57.3 ± 17.1 0.074 

Distension 71.4 ± 9.6 59.1 ± 17.7 0.041 
Dissatisfaction with bowel habits 74.1 ± 6.0 67.3 ± 18.6 0.246 

IBS-related quality of life 74.1 ± 7.6 75.5 ± 7.5 0.391 
 
 

Figure 7: Faecalibacterium relative abundances in the personalized nutrition group pre- and post-intervention. 
 
 

The personalized nutrition was effective on all, considering each of the 5 IBS-SSS items. In contrast, abdominal pain 
frequency, dissatisfaction with bowel habits, and IBS-related quality of life were not changed  significantly in the 
control group (Table 2). 

 

Post-interventional changes in microbiota profiles 
 

After six weeks of intervention, a significant shift in microbiota profiles in terms of alfa- or beta-diversity was not 
observed in both groups. A trend of decrease in the Ruminococcaceae family for the personalized nutrition 
intervention group was observed; however, this change was not observed to be statistically significant (p = 0.17, 
paired t-test). A statistically significant increase in the Faecalibacterium genus was observed in the personalized 
nutrition group (p = 0.04), whereas no  meaningful change was reported for the control group (p = 0.63) (Figure 7). 
Both Bacteroides rich and Preveotella rich enterotypes were represented in personalized nutrition and control 
intervention groups without significantly different Bacteroides and Prevotella abundances (p = 0.34 for Bacteroides and 
p = 0.36 for Prevotella, Mann-Whitney U-test). However, we have observed an increase in Bacteroides for the 
personalized nutrition group (p > 0.05), while an increasing trend in Prevotella (p = 0.057) was noticeable in the control 
group. Along with that, a significant increase in the putatively probiotic genus Propionibacterium (p = 0.027) was 
apparent in the  personalized nutrition group, whereas no such increase was observed in the control group. 
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Figure 8: a. Microbiome scores for personalized nutrition intervention, b. Microbiome scores for the control intervention. 
 

Table 3: Microbiome scores (mean ± standard deviation) before and after the interventions. 

Pre-intervention Post-intervention P-value (paired t-test) 
Personalized nutrition 0.89 ± 0.04 0.62 ± 0.18 < 0.001 
Control 0.87 ± 0.05 0.79 ± 0.11 0.03 

 
The evaluation of microbiome-derived IBS index scores 

The microbiome-derived IBS index scores improved towards lower scores in both intervention groups. The 
improvement in the personalized nutrition group was observed to be greater (Table 3, Figure 8). To observe the 
correlation between the microbiome-derived IBS scores and the clinical evaluations (i.e., IBS-SSS), we have measured 
the  explained variance of IBS-SSS with respect to microbiome scores (Figure 9). Including the corresponding scores 
of both intervention groups, an R2 score of 0.652 was found, indicating that the microbiome scores contribute 
significantly  to the explanation of the clinical scores. 

 
4 Discussion 

Dietary habits constitute a strong driver of interpersonal variance in the gut microbiome composition, and their 
influence prevails over genetics by most estimates [17]. Our study investigated the therapeutic effect of the 
personalized diet on the individual gut microbiome and the disease-specific symptoms. Most IBS patients regard diet 
as an essential trigger for their gastrointestinal symptoms. Based on the subjective correlation between diet and IBS 
symptoms, there have been many attempts to design specific diets to relieve IBS-related complaints. Recent studies 
indicate that a low FODMAP diet relieves some IBS symptoms, such as abdominal gas, bloating, distension, and 
even abdominal pain [18]. Elimination of fermentable oligosaccharides, disaccharides, monosaccharides, and 
polyols (FODMAPs) is also recommended by the guidelines [19]. FODMAPs are sugars that ferment in the gut due to 
inadequate digestion; common ones are lactose, fructose, fructans, and sorbitol. Foods containing FODMAPs include  
wheat, some fruits and vegetables, corn syrup, and onions. Initial positive study of a low FODMAP diet was 
performed in IBS patients with a positive fructose breath test and without a control group [20]. Another randomized 
controlled study compared a low FODMAP diet with a typical Australian diet, and it has found a 30% decrease in IBS-
symptom severity [21]. However, subsequent randomized trials failed to detect significant clinical differences 
between classical IBS diets and low FODMAP diets. All the diets were nearly 50% effective in relieving IBS symptoms, 
and the low FODMAP diet is not an exception [22]. 
Another critical but neglected issue in IBS treatment is the diet-related gut microbial changes. In the last decade, 
there have been many studies on the gut microbiome in IBS patients [23, 24, 25, 26, 27]. A recent systematic review 
analyzed 24 studies, mainly from Europe and North America. They have found that Bifidobacterium,              Faecalibacterium 
genus are decreased, and Lactobacillaceae, Bacteroides, Enterobactericeae families are increased in IBS [28]. To 
overcome the reduced levels of Bifidobacteria, prebiotic or sometimes probiotic supplements might be advised to the 
IBS patients on a low FODMAP diet. While this increases the abundance of Bifidobacteria, it has some detrimental effects 
on gut health in animal studies caused by disruption of the mucosal barrier, increased mucosal inflammation, and 
visceral hypersensitivity [29]. Rapid colonic fermentation is central to the identified mechanisms that include injury 
from high luminal concentrations of short-chain fatty acids and low pH and the inflammatory effects of increased 
endotoxin load and glycation of macromolecules [29]. 
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Figure 9: The plot shows the scatter and the marginal histograms of IBS-SSS and microbiome-derived IBS scores. 
The        linear regression line represents the positive correlation. 

 
 

Currently, the optimal diet for the treatment of IBS patients is lacking. The ideal diet should be effective on (at least) 
most of the symptoms in IBS and maintain a healthy state of the gut microbiome. It should be sustainable and 
personalized. Our study is the first attempt to reach these therapeutic goals in IBS. We used machine-learning for 
determining personalized diet to modulate the IBS microbiota to an individually similar ‘healthy’ state. In other 
words, we tried to formulate a personalized microbiome-modulating diet for patients with IBS-M. The gut microbiome 
genus level IBS and healthy controls showed significant differences in beta diversity. When we look at the bacterial taxa, 
the most significant differences between the IBS and healthy control groups were observed in the Ruminococcaceae and 
Clostridiaceae families. Ruminococcaceae was increased, and Clostridiaceae was decreased in the IBS group. In the 
genera level, Ruminococcus was increased, and Faecalibacterium was decreased in the IBS group. In a recent 
systematic review, the Ruminococcaceae family and Faecalibacterium genus were not different in the IBS vs. healthy 
groups [28]. Although there are inconsistencies between the literature and our results, these differences might stem 
from patients' geographic, cultural, and dietary habits. 
The IBS-index scores on the held-out validation cohorts were different between IBS-patients and the healthy controls. 
This implies that the machine-learned IBS-index is a strong indicator of the presence of disease. We detected a significant 
improvement in IBS-SSS values for both pre- and post-intervention periods. The score improvement for the personalized 
diet group of IBS patients was greater than the control group (Table 1, Figure 6). For each of the five items of IBS-
SSS evaluated, the personalized diet group showed significant improvement on all parameters. However, the control 
group      showed no improvement in abdominal pain frequency, dissatisfaction with bowel habits, and IBS-related quality 
of life parameters. Böhn et al. reported that low FODMAP and standard IBS diet were similar for relieving IBS 
symptoms. In their study, abdominal pain frequency and IBS-related quality of life parameters were improved with 
low FODMAP diet, but the dissatisfaction with bowel habits did not improve [22]. They have noticed a nearly 50% 
response rate to both diets. This study concluded that a low FODMAP diet shows similar clinical benefits with 
standard IBS diets. 
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The post-intervention gut microbiome changes were also different between groups. After six weeks of intervention, a 
major shift in microbiota profiles in terms of alfa- or beta-diversity was not observed in both groups. A statistically 
significant increase in the Faecalibacterium genus was observed in the personalized nutrition group (p = 0.04), 
whereas no       meaningful change was reported for the control group (p = 0.63). Peter J et al. investigated the role of the 
microbiome in IBS-related psychological distress and found that depression was negatively associated with 
Lachnospiraceae abundance; the distress, anxiety, depression, and stress perception were associated with higher 
abundances of Proteobacteria. The feeling of anxiety was characterized by elevated Bacteroidaceae [30]. In our 
study, we have observed an increase in Bacteroides for the personalized nutrition group (p > 0.05), while an 
increasing trend in Prevotella (p = 0.057) was      noticeable in the control group. The increase in the Bacteroides group 
might have affected our IBS patients' anxiety status in the intervention group and improved the quality-of-life scores 
in IBS-SSS evaluation. 
The microbiome-derived IBS index scores improved towards lower scores in both intervention groups. The 
improvement in the personalized nutrition group was observed to be more significant. IBS severity is also correlated 
with gut microbiome features. Tap J et al. investigated the correlation between gut microbiota signatures and IBS 
severity. They found that IBS symptom severity to be associated negatively with microbial richness, exhaled CH4, 
presence of methanogens, and enterotypes enriched with Clostridiales or Prevotella species. This microbiota 
signature could not be explained by differences in diet or the use of medications [31]. In our study, the post-
interventional analysis showed an  increasing trend of Prevotella species (although statistically insignificant) in the 
control group. 
As a result, our study is the first trial in the literature comparing the therapeutic effect of AI-based personalized diet for 
patients with IBS-M. We had limited clinical and gut microbiome-related benefits after six weeks of intervention. Further, 
more extensive randomized controlled trials are needed to determine this treatment's safety, effectiveness, and 
durability. 
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